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Bridging Network Science and Vision Science:
Mapping Perceptual Mechanisms to Network

Visualization Tasks
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Abstract—Network visualizations are understudied in graphical5
perception. As a result, most network visualization designs still6
largely rely on designer intuition and algorithm optimizations7
rather than being guided by knowledge of human perception.8
The lack of perceptual understanding of network visualizations9
also limits the generalizability of past empirical evaluations, given10
their focus on performance over causal interpretation. To bridge11
this gap between perception and network visualization, we intro-12
duce a framework highlighting five key perceptual mechanisms13
used in node-link diagrams and adjacency matrices: attention,14
visual search, perceptual organization, ensemble coding, and object15
recognition. Our framework describes the role these perceptual16
mechanisms play in common network analytical tasks. We use the17
framework to revisit four past empirical investigations and outline18
future design experiments that can help produce more perceptually19
effective network visualizations. We anticipate this connection will20
afford translational understanding to guide more effective network21
visualization design and offer hypotheses for perception-aware22
network visualizations.23

Index Terms—Network visualizations, perceptual mechanisms,24
design framework.25

I. INTRODUCTION26

V ISUAL representations of networks often default to node-27

link diagrams, adjacency matrices, and their respective28

derivatives [1]. The visual characteristics behind many network29

layouts [2], [3] or re-ordering algorithms [4] are based on aes-30

thetic metrics grounded in designer experience and convention31
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rather than empirical data about how people perceive networks. 32

These metrics often focus on individual microscale character- 33

istics (e.g., do two edges cross) rather than on the macroscale 34

relationships between characteristics that define the visual struc- 35

ture of a network visualization. We currently have limited insight 36

into how people perceive patterns even in common network vi- 37

sualizations as they are understudied in graphical perception [5]. 38

This limited insight is challenging, in part, because compared 39

to other visualization types, conventional network visualizations 40

use physical space differently. Most common visualizations 41

represent values using absolute space (e.g., mark position or 42

length). For example, scatterplots and bar charts directly map 43

values to spatial positions. In contrast, the spatial placement of 44

nodes in a node-link diagram does not directly encode values. 45

Rather, network layout algorithms often leverage relative spatial 46

relationships among nodes to reveal higher-level features, such 47

as clusters. Density in adjacency matrices is loosely correlated 48

with connectedness but is highly dependent on the matrix row 49

and column order. For example, a continuous path in the network 50

may be encoded by non-adjacent cells in the matrix. We turn to 51

vision science—the study of how humans perceive and reason 52

about the visual world—to systematically understand how we 53

can design network visualizations that leverage human percep- 54

tion. 55

Elements of vision science have long been applied to network 56

visualization perception, with prior work bridging vision science 57

and visualization yielding actionable guidelines to inform the 58

design and development of more effective visualizations [5], [6]. 59

The present paper acknowledges the critical interplay between 60

foundational principles rooted in vision science and algorithmic 61

intuition, re-emphasizing the importance of applying a cohesive 62

interdisciplinary framework to network visualizations. By lever- 63

aging vision science principles, we can renew our understanding 64

and inspire new frontiers to advance techniques that augment 65

network visualizations through their unique use of physical 66

space. 67

We introduce a framework (Table I) that maps five relevant 68

perceptual mechanisms when using node-link diagrams and 69

adjacency matrices for common network analysis tasks [7]: 70

attention, visual search, perceptual organization, ensemble cod- 71

ing, and object recognition. 72

Our framework concentrates on relatively simple networks 73

to establish a foundational mapping of perceptual mechanisms 74
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TABLE I
SUMMARY OF HIGHLIGHTING THE PERCEPTUAL MECHANISMS THAT PLAY A ROLE FOR COMMON NETWORK TASKS (SEE SECTION II-B) FOR NODE-LINK

DIAGRAMS AND ADJACENCY MATRICES

to network visualizations. For instance, the scale of networks75

discussed in this work is in line with most experiment studies of76

network visualizations [8]. This paper assumes networks with77

the following characteristics:78
� Scale: Medium, sparse networks where the number of79

nodes is [21,50] and the linear density is [1.01, 2.0] (note:80

we adhere to the definitions provided by Yoghourdjian81

et al.’s survey [8])82
� Network Structure: Unweighted83
� Network Visualizations: Static adjacency matrices and84

node-link diagrams85

We start with these basic characteristics for our framework86

to serve as a roadmap for the network visualization and vision87

science communities. The goal is to i) revisit results from past88

investigations to connect past findings and generalize results89

across a broader set of use cases (Section V-A) and ii) pose novel90

investigations into network visualization efficacy and design91

(Section V-B). These two goals lay the foundation for boot-92

straping new research directions at the intersection of network93

visualizations and human perception. Consequently, novices and94

experts in network visualization can benefit from our framework95

by having a succinct understanding of the current landscape and96

challenges.97

By achieving both goals, our framework offers a new lens for 98

evaluating network visualizations beyond task performance such 99

as time and accuracy. The five perceptual mechanisms discussed 100

in the context of network visualizations can equip researchers 101

with the tools to identify why certain features or aspects of 102

a visualization design can change people’s interpretation and 103

task performance. For example, existing work has produced a 104

widely-known guideline that reducing link crossings in node- 105

link diagrams can enhance perceivability [9], [10]. However, 106

empirical work by Dwyer et al. [11] revealed that participants 107

performed with worse time and accuracy when searching for 108

cliques with the orthogonal layout than the force-directed layout, 109

even though the former has fewer link crossings. This finding 110

contradicts best-practice guidelines. 111

Our framework can help reconcile contradictions like these 112

by identifying the perceptual mechanisms underlying the em- 113

pirical observations, helping improve best practice guidelines 114

by understanding when to generalize. In this case, the “object 115

recognition” mechanism can explain the contradiction. Partici- 116

pants performed better with force-directed layouts because the 117

layout creates more clusters that resemble familiar perceptual 118

structures users have learned to recognize in network analysis. 119

We discuss this case more deeply and offer additional examples 120
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in Section V-A. From these case studies, we note two actionable121

insights in Section VI-B on how others can build upon this122

work, specifically experimental design suggestions for future123

interdisciplinary work. Together, these case studies and future124

experimental designs demonstrate the value of our interdis-125

ciplinary framework in guiding researchers to study network126

visualization.127

This framework can also lay the foundation for developing128

perception-aware network visualizations: visualizations that are129

more than simply informed by perceptual principles, but rather130

designed to actively coordinate with an analyst’s perceptual131

processes as they accomplish a given set of tasks. Future re-132

search can systematically examine the effect of network design133

features on these perceptual operations to generate guidelines134

for perception-aware network visualizations.135

Contributions: We contribute (i) an interdisciplinary frame-136

work that considers how perceptual mechanisms affect network137

tasks in canonical network visualizations, including (ii) prelim-138

inary application of the cognitive and perceptual mechanisms139

behind common network tasks and (iii) theoretical investigations140

of how we can design experiments to ground hypotheses and141

generate generalizable design guidance emerging from these142

applications.143

II. BACKGROUND & RELATED WORK144

To generate an interdisciplinary framework for reasoning145

about how people perceive network visualizations, we draw146

on existing literature on network visualizations, network tasks,147

perceptual studies for visualizations, and graph aesthetics.148

A. Network Visualizations149

A network is a data structure that contains a set of data points150

(i.e., entities of interest) and their relational data. In this paper,151

we exclusively use network terminology and denote these data152

points as nodes and the pairwise connections between them153

as edges. People visualize networks in a wide range of do-154

mains (e.g., biology, engineering, social sciences) [12], [13], and155

as such, network visualizations hold strong precedence within156

visualization research and practice [1], [14]. While networks157

can also be geospatial [15], multi-variate [16], [17], dynamic158

[18], or even hypergraphs [19], our focus on undirected and159

unweighted networks aligns with the network complexity used160

in most evaluations [8]. Though many network representations161

exist [20], [21], [22], the two most common representations162

of undirected networks are node-link diagrams and adjacency163

matrices.164

Adjacency matrices visualize a network as a table with n× n165

cells, where n is the number of nodes. The matrix as a whole166

(i.e., the n2 cells) provides an overview of all possible con-167

nections (i.e., edges) between nodes. A cell is filled only if168

an edge exists between the nodes of the corresponding row169

and column within the dataset. The order of rows and columns170

dictates the patterns displayed. Reordering the elements of the171

matrix can assist with high-level tasks (e.g., network comparison172

[23], identifying groups or highly connected vertices [24]). The173

ordering of the rows and columns can be arbitrarily decided 174

(e.g., alphabetically) or algorithmically computed [4]. Node-link 175

diagrams provide a structural layout of a network. Each node 176

within the dataset is traditionally visualized as a circle, and 177

edges connecting the nodes are represented with lines (straight or 178

curved). A node-link’s spatial structure, or layout, is determined 179

algorithmically. The most popular layout is the force-directed 180

layout, which treats the network as a physical system [3]. Nodes 181

repel each other with a pre-determined force while edges act 182

as springs pulling connected nodes together. There are other 183

layouts, including, but not limited to, hierarchical layouts [25], 184

centrality-based layouts [26], grid-like layouts [2], topology- 185

based layouts [27]. Despite the popularity of node-link diagrams, 186

they become easily cluttered. We refer readers to Tamassia’s 187

handbook [28] for an overview of the various graph drawing 188

algorithms to address this challenge. Similarly, graph aesthetics 189

quantify the visual characteristics of a node-link layout and can 190

be used to tune algorithms to reduce measurable clutter, such as 191

edge crossings, while maximizing desirable properties, such as 192

clusters [9], [10]. 193

B. Network Tasks 194

Bertin [29] proposed three levels at which tasks operate: i) an 195

elementary level, comprised of individual graphic elements and 196

the task to understand their specificities; ii) an intermediate level, 197

for comparisons among subsets of graphic elements; and iii) 198

an overall level, comprised of global trends and relations. This 199

hierarchy echoes observations in more modern task taxonomies 200

for networks [7], [30], [31]. Our work is built upon the task tax- 201

onomy proposed by Lee et al. [7], which describes four groups of 202

network-related tasks—topology-based, attribute-based, brows- 203

ing, and overview—while considering well-established theories 204

of visualization tasks broadly, including canonical low-level 205

visual analytic tasks [32] and Bertin’s task hierarchy [29]. 206

The work by Lee et al. [7] serves as a common foundation 207

for extended discussions of network tasks [18], [30], [33], [34], 208

which we briefly summarize below. Topology-based tasks con- 209

cern a network’s topology— the structure of how nodes and 210

edges are arranged within a network. Topological properties 211

can apply to the network as a whole or to individual nodes and 212

edges. Lee et al.’s topology-based tasks address i) individual 213

elements, such as nodes (e.g., “Find the set of nodes adjacent 214

to a node”) and links (e.g., “Find the shortest path between 215

two nodes”), ii) sub-networks, such as groups or cliques (e.g., 216

“Identify clusters,” “Are the given two groups neighbors?”) and 217

iii) the entire network (e.g., “Estimate the size of the network”). 218

Attribute-based tasks focus on deriving specific values from 219

selected data through either filtering, computing, or finding 220

the range or distribution on a network’s edges or links (e.g., 221

“Filter sets of nodes”, “Find the nodes having a specific attribute 222

value”). Similarly, browsing tasks focus on tracing the network’s 223

connections to follow a given network path (e.g., “Follow a 224

given path,” “Return to a previously visited node”). Lastly, 225

overview focuses on summative properties of a network (e.g., 226

“Find larger-scale structural features”). 227
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C. Perception in Visualization228

Once uncommon [35], visualization researchers are increas-229

ingly incorporating perceptual and cognitive methods to eval-230

uate visual perception for data-driven displays [5], [6]. Now, a231

growing number of interdisciplinary studies illustrate how vision232

science methods can lead to improved design recommendations233

[36], [37] and reduce bias [38]. However, these efforts are not234

tailored for nor do they typically include network visualizations235

as part of their investigations.236

Networks are understudied in graphical perception [5]. Most237

network user studies focus on comprehension, particularly on238

network layouts and aesthetics [39], or determining the upper239

limit of a network’s size and complexity [8], [40]. Some studies240

investigated physiological measurements like eye-tracking [41],241

[42], [43] but are limited. We argue the lack of perceptual studies242

for networks stems largely from one reason: network represen-243

tations use physical space differently. In contrast, past percep-244

tual studies for other visualization idioms are predominantly245

spatially oriented (e.g., scatterplots, bar charts, line graphs).246

The spatial positioning of a node for a node-link diagram does247

not necessarily convey visual significance with many layout248

algorithms. For example, variants of force-directed layouts [44],249

[45], [46] focus on better distributing the nodes’ positions while250

retaining the relative positions of their neighbors. The algorithms251

behind several network layouts, including force-directed, are252

generally developed based on some heuristic or aesthetic criteria253

[9], [10]. A similar reasoning applies to adjacency matrices.254

Thus, past visualization investigations do not translate well to255

network visualizations. Network visualizations require a differ-256

ent set of approaches to understand how people perceive and257

reason with them.258

Previous evaluations of network visualizations (see these259

surveys [8], [40] for a comprehensive overview) often focus260

on visual features of nodes or edges (e.g., color) as opposed261

to how the visual system processes the visualization. Visual262

features certainly impact the efficiency of perceptual operations263

(discussed further in Section IV) [47], [48] but note that visual264

features act as building blocks for perceptual mechanisms.265

Past evaluations mainly focused on performance measures266

(e.g., response time and accuracy) to evaluate different network267

layouts [11] and compare different visualization approaches268

[24], [49]. Recent studies offer insight into the processes people269

use to perceive and reason about networks. For example, Huang270

et al. [50] use cognitive load to measure a network visualiza-271

tion’s effectiveness at different scales and levels of complexity.272

Research has also focused more on the human aspects of net-273

work layouts (e.g., memorability [51]) by asking participants274

to produce network visualizations [52], [53], verifying that275

node-link diagrams should reduce link crossings and support276

visual features that highlight clusters. Though these studies also277

share our goal of connecting perceptual and cognitive processes278

to network visualizations, their small number also highlights our279

relatively limited empirical understanding of how people make280

sense of network data. We aim to connect relevant concepts281

from perception to a range of network task types to highlight282

opportunities for more effective network visualization guide- 283

lines and practices. 284

D. Graph Aesthetics 285

The graph drawing community recognizes the challenges of 286

producing readable network visualizations, notably node-link 287

diagrams. As mentioned in Section II-A, as networks get larger 288

and more densely connected, node-link diagrams become easily 289

cluttered. To amend this challenge, the graph drawing commu- 290

nity proposed graph aesthetics. Graph aesthetics are heuristics 291

intended to help designers create more readable network visual- 292

izations. Examples of these aesthetic metrics include symmetry 293

[54], [55], minimizing edge crossing [56], and minimizing bends 294

[57]. Though most graph aesthetics target node-link diagrams, 295

Beck et al. [58] introduced an aesthetic dimensions framework 296

to help translate existing graph aesthetics to dynamic adjacency 297

matrices. 298

Prior work [59], [60], [61] aimed to perceptually validate 299

various graph aesthetics with empirical studies. We refer our 300

readers to these two surveys [10], [40] for a more comprehen- 301

sive list of related studies. As an overview, participants are 302

evaluated based on how well they solve certain tasks using 303

different network visualizations. These network visualizations 304

may differ based on layout or aesthetic criteria. For instance, 305

Purchase [61] investigated which graph aesthetics heuristics had 306

the greatest effect on the shortest-path task. The study revealed 307

that minimizing edge crossings was the most important criterion. 308

While such studies provide empirical evidence, they still largely 309

reflect the limitation of solely relying on performance measures 310

(e.g., response time and accuracy; see Section II-C). As a result, 311

we still lack fundamental understanding of why certain graph 312

aesthetic criteria outperform others. 313

Huang [62] also mirrors our motivation, emphasizing the need 314

to evaluate fundamental perceptual mechanisms behind these 315

network tasks and even graph aesthetics. A limited number 316

of studies [63], [64], [65], [66] use vision science methods, 317

namely eye-tracking, to target perceptual operations. While 318

eye tracking reveals perceptual complexities from acuity and 319

attentional limitations, it fails to account for broader knowledge 320

built through processes like ensemble coding or memory. There 321

are other aspects of perceiving networks that are not as directly 322

reflected in eye movements. We build upon these past efforts to 323

create a stronger connection between key topics and highlight 324

other vision science methods researchers can use for future work 325

(Section V-B). 326

III. FRAMEWORK OVERVIEW 327

We introduce a framework (Table I) describing the visual 328

perceptual mechanisms involved in conducting analytic tasks 329

(see Section II-B) with network visualizations, with a focus 330

on node-link diagrams and adjacency matrices. As discussed 331

in Section II, most network visualizations are designed based 332

on algorithms [67], aesthetics [68], or a combination of the two 333

[69]. We take an interdisciplinary perspective by proposing a 334
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Fig. 1. Visual examples of perceptual mechanisms (Section IV). Top row illustrates each perceptual operation’s basic principles. Bottom row shows how these
perceptual mechanisms are applied to network visualizations. Attentional selection illustrates how people can attend to only a subset of information at a time
(e.g., we cannot read the two sentences nor look at two cells in the adjacency matrix simultaneously). Visual search illustrates how our eyes will serially search
for the target object amongst other objects (try finding the letter “T” or the target node in a node-link diagram). Perceptual organization illustrates our ability to
form a visual configuration from the spatial organization of individual components (e.g., people can see different clusters within a node-link diagram based on the
node’s color and spatial proximity). Ensemble coding allows the estimation of distributional characteristics of visual features (e.g., orientation, size, or color) over
a set of objects (e.g., the different colored clusters summarize high-density regions in the adjacency matrices). Object recognition occurs when a visual object’s
representation matches an individual’s representation of the object in long-term memory (e.g., we recognize all the figures are fish; analysts can recognize two
connected components in the network visualization).

framework structured by perceptual operations from theories335

of human visual cognition. This broader perspective aims to336

identify visualization design opportunities for networks and337

theoretical gaps in our understanding of network perception.338

A. Key Network Tasks and Perceptual Mechanisms339

We scope our framework to cover two common network340

visualization representations: adjacency matrices and node-link341

diagrams. The authors, with backgrounds spanning across hu-342

man perception and cognition, information visualization, and343

network visualization, reflectively synthesized existing work344

to identify a set of common analytic tasks with networks. We345

consider shared, underlying perceptual mechanisms associated346

with each task to come up with seven task categories and five347

perceptual mechanisms.348

The seven task categories are inspired by Lee et al.’s task349

taxonomies for network tasks [7], the low-level visual analytic350

tasks in information visualization from Amar et al. [32], the351

multi-level typology from Brehmer & Munzner [70], as well352

as extensive discussion at the Network Perception Dagstuhl353

workshop in 2023 [71]. These categories include: topology,354

attributes, browsing, overview, hypothesis testing, comparison,355

and disambiguating structures at multiple resolutions (e.g., iden-356

tifying a network’s topology).357

For the perceptual mechanisms, four of the authors first collec-358

tively identified 27 specific perceptual phenomena from human359

vision science that may play a role in network analysis through360

group discussions and referring to prior work in vision science361

(see the supplemental material for an overview). For example,362

centrality comparison and density comparison are both examples363

of ensemble coding [72]. We then grouped these phenomena into364

six classes of perceptual operations—perceptual functions that365

rely on related visual processes—to provide more concrete and366

direct connections between networks and visual processes.367

The classes include scene perception, visual search, object 368

recognition, internal representation, perceptual organization, 369

and ensemble coding. During the grouping process, we also 370

identified a set of low-level visual features that could impact 371

the efficiency of perceptual operations. These features include 372

visual density, numerosity, connectedness, path traceability, dis- 373

tance, contrast, area, and centrality. While this paper focuses 374

on higher-level perceptual operations and does not extensively 375

discuss the effect of these low-level visual features, we rec- 376

ognize that design decisions manipulating these visual feature 377

parameters can impact the efficiency of all perceptual oper- 378

ations. The perceptual operations we discuss offer a context 379

for future researchers to systematically examine the effect of 380

individual visual features on network visualization design and 381

interpretation. Readers can reference the work by Burch et al. 382

[40] for a comprehensive survey of the effect of these low-level 383

features. 384

The authors—one of whom is a researcher in perception and 385

cognition, three of whom work at the intersection of perception 386

and visualization, and two of whom have extensive experience in 387

network visualization—iterated on the six classes, refining them 388

into five core operations for network visualization perception 389

listed below. See Section IV for more details and Fig. 1 for 390

visual examples. 391
� Attention: Restricting visual processing to only a subset of 392

information at any one time to prevent distractor interfer- 393

ence [37], [73] 394
� Visual search: Adjusting attentional allocation over time 395

as some items are deemed irrelevant and when other new 396

items are considered 397
� Perceptual organization: Linking items together to allow 398

them to be processed as a visual configuration [52] 399
� Ensemble coding: Estimating distributional characteristics 400

of visual features (e.g., orientation, size, color) over a set 401

of objects or regions [74] 402
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� Object recognition: Categorizing a visual object based on403

its match to object representations stored in long-term404

memory [75]405

While not exhaustive, this list reflects common themes we406

observed across different network tasks per network visualiza-407

tion type and reflects the common areas of vision science re-408

search [72], [76]. Attentional selection, visual search, ensemble409

coding, and perceptual organization are categories of perceptual410

mechanisms that align with past theoretical works linking vision411

science and visualization broadly [74], [75], [77]. Perceptual412

organization, in particular, is especially critical to consider as it413

encompasses Gestalt principles (and subsequent work on per-414

ceived grouping and relatedness) that have directly influenced415

past network visualization approaches and experiments [10],416

[52], [78], [79], [80], [81]. We add object recognition because417

of the role that previously stored visual representations play in418

identifying and differentiating specific nodes and analyzing the419

shape properties of complex configurations of nodes and links.420

IV. PERCEPTUAL MECHANISMS421

Table I outlines the relevant mechanisms for each network422

analysis task. To enable a better understanding of each percep-423

tual mechanism, we describe its basic principles and discuss how424

the perceptual mechanism operates when an analyst engages425

with network tasks.426

A. Attention427

Attention [73] restricts high-level processing to only a subset428

of information at a time, such that a target stimulus, like a mark,429

can be processed without interference from distractors.430

Basic Principles. Attention can be internal or external. Exter-431

nal attention refers to attention allocated to stimuli originating432

in the world, but internal attention refers to our ability to attend433

to a given line of thought. Visual attention can be overt or covert434

[82] by shifting attentional focus (e.g., sets of co-located nodes).435

Covert attention allows us to select a specific region within a sin-436

gle glance. Overt attention, in contrast, refers to eye movements437

such as saccades, which determine what part of the visualization438

is projecting visual information to the high-resolution retinal439

region of the fovea.440

Selection is one aspect of attentional control, and can flexibly441

allocate cognitive resources to a range of information that is442

selected. For instance, attention can be selective or divided. In443

selective attention, we focus our processing resources on one444

object or group of objects (e.g., a set of nodes) and prevent other445

objects (e.g., irrelevant nodes) from interfering with processing446

[83]. In divided attention, we attempt to attend to multiple ob-447

jects (e.g., attending to three fully-linked visualizations), which448

can degrade our abilities to efficiently process each object [84].449

Attentional zoom refers to the size of the region selected by450

attention, which can be broad or narrow. With broad attentional451

zoom, we distribute our attention broadly to select a large portion452

of a visual scene. With narrow attentional zoom, we are narrowly453

focused on a single mark or small region.454

How is attention used in network visualizations? An effec-455

tive visualization directs attention to key parts of a network456

to accomplish the intended tasks. An analyst might process 457

the entire node-link diagram or adjacency matrix as a single 458

large object, setting the attentional zoom broadly to include the 459

entire diagram. They could use selective attention to narrowly 460

focus on just a single object, such as a node and its neighboring 461

nodes. In Fig. 1, the red bar over the adjacency matrix illus- 462

trates specifically attending to that row. They could use divided 463

attention to focus more broadly on multiple objects, such as 464

two clusters connected by a bridge. During network exploration 465

tasks, such as overview or browsing tasks, an analyst might 466

position their eyes to take in a large portion of the network. 467

For more localized tasks such as direct connection (e.g., finding 468

a set of nodes connected to a given node) or common connection 469

tasks (e.g., finding bridges), an analyst might move their eyes 470

to the most relevant region to obtain higher acuity (i.e., spatial 471

resolution) to make out fine details, such as tracing paths between 472

nodes which may require moving our attention carefully down 473

the edge to understand specific relationships robust to artifacts 474

like edge crossings. Given the limited meaning of physical space 475

in network visualizations, analysts must fluidly employ different 476

forms of attention to complete most network tasks. 477

B. Visual Search 478

Visual search is one aspect of attentional control that is key 479

for interpreting network visualizations. While visual attention 480

generally focuses on what we look at, the goal of visual search 481

specifically is to find and attend to one or more target objects 482

that are surrounded by distractor objects. In difficult searches, 483

attention may be directed serially from one distractor to another 484

before the target is found. 485

Basic Principles. Depending on the relationship between the 486

target and distractors, it can be much harder to find a target 487

as the set size (i.e., the number of marks in a visual display) 488

increases. However, search efficiency can often be improved 489

with two types of search guidance: bottom-up and top-down. 490

If the target is sufficiently different from distractors, bottom-up 491

guidance (i.e., guidance originating from the features of a visual 492

object) can move attention to it quickly (i.e., pop out), regardless 493

of how many distractors there are [85]. If a target does not pop 494

out, top-down guidance (i.e., guidance originating from a target 495

goal) can help direct attention if one or more features (e.g., color, 496

size, orientation) of the target are known [86]. In guided search, 497

the known target features are stored in a target representation in 498

visual working memory, and attention is restricted to the items 499

sharing those features [87]. Unguided search can be inefficient 500

(e.g., slow reaction times to find the correct target because 501

attention may first be allocated to a number of distractors). 502

Unguided searches typically involve a serial self-terminating 503

search, in which items are serially examined one after another 504

until the target is found or all items have been checked. To 505

experience this phenomenon, look for the letter “T” in Fig. 1. 506

How is visual search used in network visualizations? Search 507

is at the heart of most network tasks (e.g., finding a set of 508

nodes or clusters). Search is also often necessary before other 509

network tasks can take place. For example, to find the shortest 510

path between two nodes, analysts must first search to locate the 511
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two target nodes within the network. People may often employ512

search to look for more compound topological structures within513

a network, such as cycles or cliques.514

Visual search within node-link diagrams and adjacency ma-515

trices is mainly unguided and time-consuming. Though there516

are exceptions, such as Sugiyama style layouts [42], visual517

search remains difficult for most network visualizations. While518

interactive queries can change the visual features of target nodes519

to support bottom-up search, this unguided search can be ex-520

tremely difficult for two reasons. First, the set size of networks521

is often non-trivial. A “small” network dataset can contain 200522

nodes [8], while “large” datasets can contain thousands or more523

[88]. It is challenging to visually search for a particular node524

amongst thousands without a directed cue (e.g., highlight from525

an interactive query, Fig. 1). Relatedly, the features of target and526

distracting elements for network visualizations are largely the527

same for most common network visualizations (e.g., all nodes528

in node-link diagrams are circles, and all edges in adjacency529

matrices are square cells). Node-link diagrams and adjacency530

matrices can use labels to provide cues or may even use color531

to indicate group attributes. However, search can still be slow if532

the user does not have a priori knowledge of where to look.533

C. Perceptual Organization534

Understanding a visual configuration requires recognizing535

both individual components and the relationships among those536

components. Perceptual organization refers to our ability to see537

how different elements within a scene relate to one another.538

Perceptual organization is determined only in part by the pixels539

in a visualization; in many cases, the viewer can use attention540

and other aspects of top-down control to shape the organization541

imposed on the visualization (e.g., finding clusters via colors or542

shapes may elicit different perception of clusters). Through per-543

ceptual organization, visual elements are grouped and structure544

is imposed to build high-level visual objects (e.g., perceiving a545

house as a combination of windows, doors, roof, etc.).546

Basic Principles. Perceptual organization creates hierarchical547

visual representations from lower-level components. Theories548

of perceptual organization have been influenced by Gestalt549

Principles of grouping [89]. Although a detailed account of550

how these principles shape visual perception has been elusive,551

these principles continue to guide current research in visual552

perception and also help to understand how data visualizations553

are interpreted. For instance, the Principle of Similarity states554

that objects with similar shapes or colors are perceived as555

groups. The Principle of Proximity suggests that elements that556

are close to each other are perceived as a group. The Principle557

of Continuity highlights how elements will group together if558

they lie on the same contour. Fig. 1 illustrates these principles.559

Modern research has extensively refined these principles, and560

their core ideas continue to serve as a foundation for modern561

theories of perceptual organization [90].562

How is perceptual organization used in networks? In node-563

link diagrams, each line representing a link connects one node564

to another, leveraging the Principle of Uniform Connectedness565

[91]. Other Gestalt principles come into play in organizing566

nodes into groups and larger units. For example, the Principle 567

of Symmetry plays a key role in network perception. People 568

perceive symmetry in network visualizations as salient and 569

design guidelines have suggested networks take care to display 570

symmetry in network structures [40]. 571

The layout chosen for a particular node-link diagram or 572

adjacency matrix determines whether the organization created 573

by similarity, proximity, symmetry, and continuity emphasizes 574

the most informative aspects of the network structure. In many 575

cases, different aspects of a network structure will be best 576

perceived by grouping the nodes and links together in different 577

ways. Thus, proximity might be used to emphasize one set of 578

groupings, while similarity from shared colors [48] (e.g., Fig. 1) 579

or shapes might emphasize another, and in a node-link diagram, 580

a set of nodes might be aligned to allow grouping supported by 581

continuity. Such a layout gives viewers the option of using top- 582

down control of the perceptual organization to explore different 583

aspects of the network structure. 584

D. Ensemble Coding 585

Ensemble coding allows the estimation of distributional char- 586

acteristics of visual features (e.g., orientation [92], size [93], 587

or color [94]) over a set of marks in a visualization. These 588

characteristics are quickly and efficiently estimated prior to 589

active attention. Like perceptual organization, ensemble coding 590

captures group- or set-level properties rather than individual 591

details about a given object; however, ensemble coding focuses 592

on the distribution of visual features across a set of marks (e.g., 593

the mean color or density) rather than grouping. For example, 594

ensemble coding allows people to quickly estimate the mean size 595

or position of a group of scatterplot points without attending to 596

each point individually (see Szafir et al. [74] for a survey). 597

Basic Principles. Ensemble coding studies how individuals 598

can extract information on sets of marks based on their shared 599

properties. This perceptual mechanism uses broad attentional 600

zoom (c.f., Section IV-A) to extract information at large. Four 601

categories of ensemble coding are prevalent for visualizations: 602

identify sets of values (e.g., in- and out-groups), summarize 603

across values based on their distribution (e.g., means and vari- 604

ance), segment collections (e.g., estimate clusters), and esti- 605

mate high-level structure or patterns (e.g., identify trends) [74]. 606

Though these principles largely pertain to spatial relationships, 607

ensemble coding can also summarize features over an entire 608

set of marks. For example, people can rapidly estimate the 609

mean size or color of a set of glyphs [93], [95]. In Fig. 1, 610

we can notice that all lines are slanting upwards to the right 611

at a glance. These mechanisms allow us to quickly estimate the 612

gist of a scene (e.g., data distribution) to help orient us to group 613

properties. However, ensemble processes only operate over a 614

set of elements. These processes extract information about the 615

features of the distribution, such as the mean size or position, but 616

not attributes of individual items, such as the size of a specific 617

mark [93]. 618

How is ensemble coding used in network visualizations? 619

When someone initially sees a network visualization, ensem- 620

ble coding allows them to rapidly gain a high-level sense of 621
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the data. Spatial ensembles allow people to orient themselves622

to the position of elements in the visualization [96]. Featural623

ensembles allow people to gain a nearly immediate sense of the624

distribution of node shapes, sizes, colors, and edge lengths and625

orientations [97].626

In a node-link diagram, ensembles cue connectedness be-627

tween clusters (e.g., by summarizing edge orientation [98]) or628

regions of high and low density to indicate connectivity (e.g.,629

by summarizing color variations introduced by drawing nodes630

and edges). Ensembles can also summarize metadata mapped631

to nodes and edges, such as mean and variance in color or size632

mappings. If attention is restricted to one part of a network,633

ensemble coding can provide estimates of properties within that634

selected region. In an extreme case, attention might be focused635

on a single node in order to determine the number of connections636

emanating from that node. If the number is less than four, the637

number can quickly be determined through subitizing [99]. For638

larger numbers of connections, the number can be estimated639

through ensemble coding, but with lower precision.640

In adjacency matrices, these spatial and featural ensembles641

summarize regions of high- and low-edge density (e.g., the642

different colored clusters in Fig. 1). For node-link diagrams,643

ensembles can also summarize additional mark information,644

such as colors or shapes, in more complex representations.645

E. Object Recognition646

Object recognition occurs when a visual object representa-647

tion is categorized (e.g., recognized as a house or a connected648

component) after it is matched to object representations stored649

in long-term memory.650

Basic Principles. Object recognition is complicated by651

changes in viewpoint and the reconstruction of depth informa-652

tion. Many of these challenges are avoided in network visu-653

alizations, but interpreting node-link diagrams and adjacency654

matrices requires matching stimuli against long-term memory655

representations. Thus, some aspects of object recognition are656

critical to interpreting network visualizations.657

How is object recognition used in network visualizations? At a658

local level, different types of nodes are sometimes distinguished659

from one another by depicting them with different shapes and/or660

colors. Object recognition uses this shape and color information,661

along with any attached labels, to categorize each node. On a662

more global level, the interpretation of a group of nodes and663

their connections can vary considerably depending on the shape664

created by their depiction in a node-link diagram [100]. A pattern665

of nodes will be more easily remembered if it is perceived as a666

real object [101]. One configuration may resemble a particular667

object that we are familiar with, while another configuration668

of the same nodes and links may evoke an entirely different669

object. For example, a network analyst may recognize there are670

two connected components in Fig. 1 due to the white space.671

Similarly, an experienced analyst may recognize higher-level672

network structures (i.e., motifs), such as a triangle subgraph, for673

clustering and community detection (e.g., [102]). These objects674

can serve to support recall and evoke a sense of a group of nodes675

forming a single object or structure.676

V. EXAMINING FRAMEWORK UTILITY THROUGH CASE 677

STUDIES 678

We demonstrate our framework’s utility through a combina- 679

tion of case studies and speculative analyses. First, we review 680

four past studies to demonstrate how our framework can offer 681

more generalizable insight into network visualization design 682

(Section V-A). These case studies cover the five perceptual 683

mechanisms. We looked specifically for studies relevant to the 684

perceptual mechanisms mentioned in this paper. We also consid- 685

ered factors such as the recency and relevance to visualization 686

design. Second, we outline future design experiments as poten- 687

tial steps toward designing more effective network visualizations 688

grounded in conceptual replication (Section V-B). Though some 689

of these studies supported interactivity, the fundamental tasks 690

can be done statically. We assume static analysis given our 691

paper’s scope. 692

Both aspects align with our motivation for this work serving 693

as a roadmap to the network visualization and vision science 694

community. The case studies in Section V-A can guide how the 695

community can think about both perception and network visu- 696

alization problems in conjunction. Furthermore, the experiment 697

design proposals in Section V-B also serve as guides on how as 698

a community we can move forward to design and conduct better 699

experiments within this research space. 700

A. Case Studies 701

We apply our framework to four past studies to demon- 702

strate how understanding the perceptual mechanisms underlying 703

network perception can offer more generalizable insights. We 704

encourage readers to use our framework as a guide to similarly 705

revisit past works and their results. Our framework allows us to 706

directly hypothesize why these performance differences occur to 707

re-evaluate the generalizability of the results. We share aspects 708

of these case studies that are most relevant to the paper. See 709

the corresponding papers for more comprehensive insights and 710

findings. 711

Example 1 (Perceptual Organization): Yoghourdjian et al. 712

[22] evaluated people’s ability to interpret structural details 713

using the network visualizations in Fig. 2(a). One task involved 714

counting the number of 1-connected components in the network 715

visualizations (the answer in these examples is 2). 716

Relation to Framework: To make sense of the network 717

structure, people must first leverage perceptual organization 718

to form visual groups of spatially promixal nodes. Next, they 719

can leverage object recognition to locate where the 1-connected 720

component(s) occur in the network. We outlined the two 1- 721

connected components in the node-link diagram representations 722

in Fig. 2(a). 723

Results: Participants completed this task faster and more 724

accurately with the node-link diagram than with the adjacency 725

matrix. The lack of white space to separate components in the 726

adjacency matrix hindered the perceptual organization opera- 727

tion. Insight: This example demonstrates that spatial cues are 728

more saliently perceived than colors [79], [105], [106], such that 729

people are more likely to prioritize spatially proximate units as 730

a group compared to similar units using other channels. This 731
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Fig. 2. Past empirical investigations that we revisit using our framework
(Section V-A). (a) network visualization comparison; (b) layout comparison;
(c) edge representation comparison; (d) network cluster. Image A courtesy of
Yoghourdijan et al. [22], B by Dwyer et al. [11], C by Holten et al. [103], D by
Al-Naami et al. [104].

serves as a prime example that considering foundational princi-732

ples of vision science can inspire new perspectives to improve733

network visualization design. Examining encoding techniques734

that leverage spatial cues to facilitate the perceptual organization735

of network structure can improve performance in analytic tasks.736

Example 2 (Object Recognition): Dwyer et al. [11] examined737

people’s ability to identify cliques in a network using different738

node-link layouts. Fig. 2(b) shows two of the twelve layouts739

used in the study. The left is an orthogonal layout with only 7740

link crossings, and the right is generated using a force-directed741

layout with 13 link crossings.742

Relation to Framework: This task taps into a range of percep-743

tual operations, including attention and visual search, but most744

saliently object recognition.745

Results: Despite the widely-accepted guideline to reduce link746

crossings to enhance perceivability [9], [10], the study revealed747

that participants were more than three times slower in finding748

cliques with the orthogonal layout (x̄ = 26.88 sec) than the749

force-directed layout (x̄ = 8.12 sec). Participants also more750

accurately detected cliques with the force-directed layout (97%)751

than with the orthogonal layout (80%).752

Insight: The mismatch between design heuristics and behav-753

ioral outcomes Dwyer et al. [11] observed calls for a deeper754

understanding of the perceptual mechanisms behind clique755

recognition. Similar to Example 1, this case study illustrates756

the importance of supporting quick recognition of different net-757

work “objects.” The clique can be recognized by clustering and758

dense edge crossings in the force-directed layout (highlighted759

in blue).760

Example 3 (Visual search, Attention): A study by Holten et al. 761

[103] compared edge representations for node-link diagrams. 762

Fig. 2(c) showcases the three edge representations used in their 763

study: tapered, biased curvature, and animated. Participants were 764

asked to determine if two highlighted nodes were connected. 765

Relation to Framework: Our perceptual framework enables 766

researchers to generate testable hypotheses to uncover the under- 767

lying mechanisms behind the performance of each edge design. 768

For example, one could hypothesize that retaining attention is 769

pivotal for path-tracing (Table I), therefore edge representations 770

that sustain viewer attention for a longer time would be associ- 771

ated with higher performance. 772

Results: Both edge representation and path length impacted 773

behavior. Participants were faster and more accurate with the 774

tapered and animated links than with the biased curvature. For 775

medium-length links, the tapered edge condition was signifi- 776

cantly faster than the animated condition. The authors noted the 777

need for future work to understand why tapered was faster in 778

this case. 779

Insight: The work by Holten et al. [103] highlights how 780

a general recommendation (e.g., tapered edges) can be risky 781

without understanding the driving factors behind their higher 782

performance. An experiment can test whether tapered and ani- 783

mated edges require less attention shifting compared to biased 784

curvatures (see Section V-B1) by measuring eye-gaze shifts 785

and participants’ perceived effort in completing this task. The 786

experiment can be extended to examine a range of path lengths. 787

Longer paths would likely be associated with a higher attention 788

demand, and thus poorer performance. 789

Example 4 (Ensemble Coding): Al-Naami et al. [104] eval- 790

uated people’s ability to count network clusters using three 791

variants of orderable node-link layouts versus three variants of 792

force-directed layouts (Fig. 2(d)). They define orderable node- 793

link layouts where “nodes can be ordered along such a curve 794

e.g., based on topological or attributed-based critera” [104]. 795

Fig. 2(d) shows the three variants of orderable node-link layouts: 796

a baseline node order (Original), a cross-reduction ordering 797

(CR), and an optimal leaf ordering (OLO). 798

Relation to Framework: People will need to quickly extract 799

the gist of the network visualization and then count its clusters. 800

This task uses ensemble coding to initially perceive clusters at 801

a high level. This perception will be influenced based on the 802

distribution of shapes, size, number, and density. 803

Results: People identified graph clusters faster and more ac- 804

curately with orderable layouts than force-directed layouts when 805

networks have loose and/or inseparable clusters. The orderable 806

layouts create locally concentrated link clusters that form more 807

distinct density regions. A viewer can quickly extract the gist of 808

the network visualization based on mean density patterns and 809

then count the resulting clusters. The four clusters form dense, 810

white circles connected by less dense regions, which makes them 811

easy to see in the original baseline layout (GEN). The clusters 812

become more ambiguous in the CR and OLO layouts, despite 813

them being designed to optimize node cluster patterns as the 814

edge density is more uniformly distributed. 815

Insight: We re-emphasize the same call for future work that 816

Al-Naami et al. [104] expressed to better understand why the 817
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Fig. 3. Experiments to study how perceptual mechanisms operate with net-
work visualizations. (a) eye tracking to study attention fixation; (b) visual search
efficiency comparing colored versus all-black node-link diagram; (c) perceptual
organization of clusters using different matrix-reordering; (d) different network
layouts to extract ensemble features and object recognition of clusters. Image A
courtesy of Pohl et al. [41] and C by Behrisch et al. [4].

orderable layouts facilitate cluster identification. Following our818

framework, we caution network designers from relying on a819

specific algorithm without computing its ability to support seg-820

mentation (and other ensemble coding operations) that describe821

the global feature distribution people perceive.822

B. Design Experiments823

Our framework allows us to reflect on past studies and also to824

guide new experiments to generate more generalizable insight825

into network visualization design. We illustrate several open826

questions our framework can help address to demonstrate how a827

mechanistic approach helps bridge network and vision science828

for more effective visualization.829

1) Attention: Experiments can reveal how attention is allo-830

cated to different parts of a node-link diagram or adjacency831

matrix while people extract different types of information (e.g.,832

Fig. 3(a)). We generally expect that performance will be faster833

and less error-prone when a task can be accomplished with834

fewer shifts of attention. Consider a task in which people must835

determine which nodes in a network have the most connections.836

Eye tracking will provide a fairly accurate record of which nodes837

are examined and how much time is spent. Fixation records can838

determine if nodes with many connections are missed, and if839

some nodes with few connections capture attention unnecessar-840

ily and delay the final response. These data can indicate which841

strategies people adopt to accomplish the task, which might842

involve starting at one part of the network and systematically843

working their way through, or starting with a quick scan of the844

whole network and then focusing on just a few selected regions845

(e.g., Examples 1 and 2 in Section V-A). Highlighting common846

strategies will help researchers identify design opportunities847

to facilitate those strategies during analysis. We advocate for848

leveraging perceptual mechanisms as a basis for metrics that849

measure the efficiency of a strategy. For example, a strategy850

might be deemed more efficient if a person can accomplish it851

with fewer shifts of attention.852

As seen in Example 3 [103] in Section V-A, attention plays a 853

major role in tasks that involve curve and link tracing, such as 854

finding the shortest path between two nodes, browsing a given 855

path, and finding the number of adjacent nodes to a node in 856

a node-link diagram. Curve tracing determines whether nodes 857

are connected by a link. A handful of studies have measured 858

curve tracing [107] and their results indicate that people can 859

quickly trace curves (average rate of 40◦ of visual angle per 860

second). Though these studies do not directly test visualizations, 861

the results are likely applicable to tracing links in node-link 862

diagrams and perhaps in adjacency matrices. However, link 863

tracing has an additional layer of complexity because there 864

are more opportunities for confusion from links crossing links 865

in node-link diagrams than by adjacent rows and columns in 866

adjacency matrices. 867

2) Visual Search: Visual search is relevant for the majority of 868

network visualization tasks. The following design experiments 869

specifically focus on how to design nodes that pop out to 870

accelerate the search for individual nodes. Though related, we 871

discuss design experiments on recognizing different network 872

objects (e.g., cliques, bridges) based on a network’s topology in 873

Section V-B5. 874

In conventional node-link diagrams or adjacency matrices, all 875

items are the same color and all nodes are the same shape, offer- 876

ing little opportunity to guide search for a specific node. If the 877

target node can only be identified by a string of letters indicating 878

its name, then search is likely to be long and laborious and visual 879

clutter amongst nodes may make it impossible. Distinguishing 880

different categories of nodes and links by color and/or shape 881

can make search more efficient. If a small number of nodes have 882

a sufficiently contrasting color from the rest, they will pop out 883

and be found easily. Even if nothing pops out, coding different 884

categories by color, shape, or size can drastically reduce search 885

time if the analyst knows the feature designating the category of 886

the target (e.g., finding red versus blue nodes). 887

Future work can test the optimal number of colors, shapes, 888

or sizes for a given network visualization design by using 889

methods from perception research (see [6]). Search efficiency 890

can be evaluated in a number of ways, including response time 891

and accuracy. The gain in search efficiency from color-coding 892

different categories of nodes can also be measured by comparing 893

the number of eye fixations between color-coded and mono- 894

colored versions of a network diagram or adjacency matrix 895

(Fig. 3(b)). This has been similarly investigated in Example 1 in 896

Section V-A. A more detailed analysis of the eye-tracking record 897

can reveal which fixations can be avoided in the color-coded 898

version, and how the path of the search changes as the structure 899

of the visualization changes. 900

3) Perceptual Organization: How viewers organize nodes 901

and links into larger units will affect the conclusions they draw 902

about global patterns within a network. The perceptual organi- 903

zation of a network can be manipulated by changing the spatial 904

relationships among the nodes, and the effects can be measured 905

experimentally. Experiments can uncover optimal layout designs 906

that support perceptual organization processes for a given dataset 907

or set of tasks (e.g., spatial or by color). 908
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Consider the following: each node represents one student in a909

university, and each link represents a social connection between910

two students. In one node-link diagram or adjacency matrix,911

nodes can be clustered together according to the students’ ma-912

jors. Viewers can assess the degree to which students socialize913

with others in their same major versus other majors by compar-914

ing the number of connections among clusters. Using the same915

data, another version of the visualizations can cluster students916

according to where they live on campus. Experiments could test917

how to design the diagrams (e.g., what parameters to designate918

for their visual features) to facilitate perceptual organization919

that most effectively supports comparisons between these two920

groupings (Fig. 3(c)).921

4) Ensemble Coding: We expect that people can quickly922

and easily extract summary information about groups of nodes923

or links [74], [93]. If the rows and columns of an adjacency924

matrix are organized so that items in different categories are925

grouped together, then we can test if subjects can easily judge926

whether there is more connectivity within some categories than927

others by quickly judging the density of connections in each928

category. However, we anticipate ensemble coding may play a929

more nuanced role in adjacency matrices depending on how the930

node-edge connections are spatially encoded. These judgments931

likely change as features of the ensemble change, as with varia-932

tions in color or glyph use. Identifying the optimal categories to933

group rows and columns to facilitate user performance through934

these experiments will allow network designs to build more935

effective visualization tools.936

Ensemble coding also likely plays a strong role in node-link937

interpretation, especially in helping people ascertain the coarse-938

grained structure of a network. For example, layout algorithms939

often group nodes based on their connectedness or relatedness as940

captured by a range of metadata. Ensemble processes can lever-941

age these groupings to identify dense and sparse clusters, detect942

highly connected components (by finding areas of high edge943

density), assess general patterns in connectedness (by means of944

edge density and orientation), identify bridges (by identifying945

connections between dense regions), and quickly find outlier946

nodes (Fig. 3(d)). However, ensembles may also falsely suggest947

connectedness in dense spatial ensembles by treating all edges948

in an area as a distribution of pixels rather than as individual949

items.950

Designers may leverage complementary attributes of a node-951

link diagram to support a wider range of network tasks. Imagine952

a diagram in which each node is a cell phone user, with links953

to other users with whom they regularly exchange texts. The954

nodes might be color-coded by age. The size of each node might955

indicate the number of text messages that each user generates.956

Experiments could test whether ensemble coding allows viewers957

to accurately judge how text usage varies across different age958

groups. We might expect that they will be able to focus their959

attention on nodes of one color (age group) and use ensemble960

processes to quickly estimate the average size of these nodes.961

By shifting attention from one color group to another, they can962

form successive estimates of text usage for each age group. Our963

abilities to estimate featural ensembles may also translate to964

edge encodings. For example, featural ensembles may explain965

our abilities to assess homophily—the degree to which similar 966

nodes are connected—in a network when edge color indicates 967

in- and out-group relations [108]. 968

5) Object Recognition: Experiments can investigate how to 969

optimally arrange the network so people can quickly recognize 970

different topological “objects” (e.g., cliques). See “Common 971

Connection” in Table I for a full list. 972

Experiments could investigate how to globally arrange nodes 973

when participants are looking for emergent topological fea- 974

tures. If subsets of nodes have many connections and fewer 975

connections across each subset, the nodes can be arranged so 976

that the different subsets are perceived as different parts of the 977

larger object, with the boundaries between the different parts 978

being salient. Experiments can test the effect of these arrange- 979

ments on task performance. These experiments can investigate 980

well-known heuristics, such as reducing edge-crossings to avoid 981

clutter. In Example 2 in Section V-A, we speculate that this 982

heuristic may not have been appropriate for this task given how 983

the high clutter enabled participants to identify the clique. At 984

a local level, experiments can test if layout algorithms might 985

manipulate the shapes of important substructures of a network 986

(e.g., connected components) to make them easier to detect or 987

if using consistent mark design (e.g., changing node shape or 988

color) to match data semantics accelerates network search tasks. 989

VI. DISCUSSION 990

A. Design Implications 991

Our framework provides a roadmap by identifying the un- 992

derlying perceptual operations required to accomplish network 993

analytic tasks and providing actionable designs for future exper- 994

iments. Future researchers can systematically examine the effect 995

of network design features on these perceptual operations to gen- 996

erate guidelines and techniques for perception-aware network 997

visualizations. We use the term perception-aware to imply more 998

than simply being informed by perceptual principles, but rather 999

working in active coordination with an analyst’s perceptual 1000

processes as they accomplish a given set of tasks. 1001

For example, a perception-aware network visualization can 1002

dynamically account for analysts’ perceptual operations to op- 1003

timize task performance. For a common connection task where 1004

one has to find the shortest path between two nodes in a node-link 1005

diagram, a perception-aware network visualization tool might 1006

increase the saliency of the target and source nodes by high- 1007

lighting them in a different color to aid visual search. The tool 1008

might also help sustain attention through gaze-based interac- 1009

tions, using techniques similar to foveated rendering [109]. As 1010

the analyst moves their gaze around, the tool can continue to 1011

highlight relevant edges that construct the desired shortest path 1012

following the analyst’s gaze (which also offloads work from 1013

memory by externalizing the knowledge of which paths remain 1014

relevant) and de-emphasize paths that the analyst is no longer 1015

fixating on or do not relevantly connect to the source node 1016

towards the target node. 1017

A perception-aware network visualization can also gather 1018

a user’s perceptual data to predict the analytic tasks they are 1019

aiming to accomplish, similar to interaction-based methods for 1020



IE
EE P

ro
of

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, 2025

intent prediction in scatterplots [110]. Generated output values1021

would be associated with that task to reduce the cognitive or1022

computational effort required from the user. For example, a1023

user might want to perform a filtering task to filter out certain1024

sets of nodes before determining how many relevant clusters1025

are left. The network visualization might dynamically rearrange1026

the display to optimize for perceptual organization so a user1027

can easily identify the number of clusters excluding the nodes1028

to be filtered. Alternatively, the tool can track the user’s eye1029

gaze or interaction patterns and use them to predict their goal1030

of counting the number of relevant clusters excluding some sets1031

of nodes to generate an answer for the user either through a nu-1032

meric output (i.e., “6 clusters”) or by highlighting the remaining1033

clusters.1034

Furthermore, researchers and educators can leverage findings1035

associating perceptual operations with network tasks to train1036

data scientists to more effectively accomplish analytic tasks.1037

For example, in relatively small networks, certain combinations1038

of nodes and links might represent a special pattern (e.g., a con-1039

nector pattern). People could leverage object recognition to learn1040

to identify such patterns. Through training, people can become1041

extremely efficient at identifying combinations of patterns by1042

seeing such combinations as a distinct object, similar to how1043

chess masters learn set moves by memorizing combinations of1044

chess piece placements [111].1045

B. Actionable Insights1046

We note two actionable insights derived from our work.1047

First, we offer a research pipeline that empowers scientists1048

to generate more effective and generalizable design guide-1049

lines. Often, network visualization scientists design multiple1050

solutions and compare their effectiveness through an A/B com-1051

parison. However, without decoding why two designs differ1052

in performance, the resulting recommendations or guidelines1053

might not generalize. Researchers can face challenges of rec-1054

onciling findings conflicted with existing best practices. We1055

therefore recommend employing the framework as follows to1056

enhance the evaluative process: 1) generate designs and com-1057

pare their effectiveness per usual practices, 2) identify potential1058

perceptual operations that might explain the increased/decreased1059

performance (e.g., visual search), 3) conduct a follow-up experi-1060

ment where the researchers manipulate that perceptual operation1061

(e.g., making it easier or harder to perform visual search) and1062

see if performance changes with the manipulation. This will1063

allow the researchers to identify the driving factor behind the1064

improved performance. 4) once the driving factor is identified,1065

the researchers can adjust their design and/or recommendations1066

to be more effective and generalizable. We encourage readers1067

to revisit the four case studies as examples of this suggestion1068

(Section V-A).1069

Second, we offer several perceptual-awareness metrics based1070

on our framework for future network visualization evaluation.1071

Many existing layouts are optimizations of quality criteria,1072

such as minimizing edge crossings. However, as discussed in1073

Section II-D, graph aesthetics are not always directly related to1074

the tasks people perform on networks. Therefore, we advocate1075

for a new category of network optimization criteria based on 1076

perceptual performance. Points of consideration might include: 1077
� Attention: How quickly does the network direct user atten- 1078

tion to key parts of the network useful for a task? 1079
� Visual Search: How many eye movements did it require to 1080

complete a given task? How close in spatial proximity was 1081

the initial point of exploration from the target? 1082
� Perceptual Organization: How many visual features (e.g., 1083

color, spatial proximity) are present that compete for per- 1084

ceptual grouping? 1085
� Ensemble Coding: How quickly can the user orient them- 1086

selves to the global structure of the network, including the 1087

distribution of node shapes, sizes, colors, edge length, and 1088

orientations? 1089
� Object Recognition: Given a pre-defined pattern (e.g., 1090

bridges), how quickly can users recognize it in a particular 1091

configuration of the network? 1092

These criteria could eventually become a scalable evaluation 1093

for network visualization design. We posit that a better under- 1094

standing of, and more importantly, quantitative measurements of 1095

layout quality for task-based perception would lead to new opti- 1096

mization criteria, design approaches, and interaction techniques. 1097

Furthermore, these criteria can be used when re-examining past 1098

empirical studies [112]. 1099

As illustrated in Section V-A, re-examining prior work can 1100

help reflect on experimental designs and lead to more ro- 1101

bust insights. For example, prior works on user-generated 1102

network layouts build upon each other [11], [52], [113] to 1103

uncover what features should be prioritized when develop- 1104

ing network layout algorithms. As highlighted by Purchase 1105

et al. [114], such algorithms are “inspired by assumptions 1106

about what a human would do in generating a drawing”. Ex- 1107

tending this logic to all aspects of network visualization can 1108

lead to a foundation for establishing perception-aware network 1109

visualizations. 1110

C. Limitations and Future Work 1111

Our framework is non-exhaustive. First, we discuss five key 1112

perceptual mechanisms, and we listed future experiments as a 1113

result to investigate to lead to more breadth (Section V-B). We 1114

also focus on canonical network visualizations at their most basic 1115

state, with some connection to additional network characteristics 1116

where most notable. This limited scope is by necessity when 1117

considering the vast array of possible network designs and 1118

layout algorithms. As our knowledge of network perception 1119

evolves, we anticipate the framework will grow along several 1120

core dimensions of complexity. 1121

Network Representations and Interactions: This framework 1122

only considers two static basic network visualization representa- 1123

tions. Future work will be necessary to consider how interactions 1124

will affect perceptual mechanisms for network tasks and how the 1125

perceptual mechanisms will change for alternative representa- 1126

tions. For example, NodeTrix [20] combines adjacency matrices 1127

and node-link diagrams into one representation. Perceptual or- 1128

ganization and ensemble coding, for example, for this represen- 1129

tation likely differ compared to its traditional counterparts. With 1130
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NodeTrix, it is likely difficult to infer the network structure by1131

applying Gestalt principles as clusters of nodes are represented1132

as adjacency matrices. People are unlikely to use the same spatial1133

and feature ensembles as traditional node-link diagrams given1134

how significant information about local network properties is in1135

tabular form.1136

Network Scale: Our framework does not consider large net-1137

works [8], [88], [115]. As stated earlier, we assume the basic1138

characteristics of a medium-size, sparse network, such that1139

people can reasonably see both the local and global network1140

structure within a traditional display. The mapping of perceptual1141

mechanisms and tasks for large networks (e.g., 103 nodes) is1142

sufficiently ambiguous that research recommends that visual-1143

izations prioritize inspecting local details as opposed to the1144

global structure of large networks [116], [117]. Future research1145

should extend our framework to large networks to understand1146

how mechanisms break down at scale and how computational1147

and visual techniques can overcome these breakdowns.1148

Visualization already outlines the importance of studying1149

scalability from a vision science perspective with large networks1150

[8], [118]. Larger networks are likely to use edge bundling1151

[119]. Edge bundling offers an opportunity to measure the1152

efficiency of internal processes (e.g., speed and accuracy) to1153

trace curves and grouped edges in network visualizations (see1154

Section V-B). Additionally, with larger networks, visual queries1155

will contain more distractor nodes and edges and will require1156

more thoughtful considerations of visual search and attention.1157

However, Yoghourdjian et al. [8] highlights the challenges of1158

inferring cognitive scalability of large network visualizations.1159

These visualizations generally require interactivity due to their1160

scale, but interactivity leads people to perform the tasks on a1161

subset of the network (e.g., zooming into a specific subregion)1162

rather than the entire network.1163

Dynamic Networks: Our framework does not consider other1164

types of networks, such as dynamic networks [18]. Anima-1165

tion commonly conveys temporality (e.g., GraphDiaries [120])1166

for these evolving networks. Research shows that real-time1167

monitoring for time-series visualization often leads to change1168

blindness and cognitive overload [121], [122] but animation can1169

be beneficial when used for short periods [123]. Building upon a1170

psychological insight that multiple-object tracking is influenced1171

by coherent scene perception [124], research also highlights1172

the importance of preserving one’s mental map (i.e., drawing1173

stability) [125]. Future work will be necessary to continue1174

to cross-pollinate knowledge across communities to advance1175

robust visualizations.1176

VII. CONCLUSION AND FUTURE DIRECTIONS1177

We introduce a framework describing five key perceptual1178

operations for analytic tasks with node-link diagrams and ad-1179

jacency matrices, synthesizing knowledge from visualization1180

and visual sciences. Intended as a roadmap, we describe how1181

this framework enables future experimental research by lever-1182

aging theories of human perception to advance network visu-1183

alization research. This framework can serve as a preliminary1184

foundation for bridging vision and network science, providing 1185

common ground for generating new theories, guidelines, and ex- 1186

periments to better understand how people reason with network 1187

visualizations. 1188
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